1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
| import torch from torch import nn, optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt
device = "cuda:0" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}")
transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])
transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform_train) test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform_test)
class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.pool = nn.MaxPool2d(2) self.dropout = nn.Dropout(0.25)
self.fc1 = nn.Linear(3 * 3 * 128, 256) self.fc2 = nn.Linear(256, 10)
def forward(self, x): x = torch.relu(self.conv1(x)) x = self.pool(x)
x = torch.relu(self.conv2(x)) x = self.pool(x)
x = torch.relu(self.conv3(x)) x = self.pool(x)
x = torch.flatten(x, 1) x = self.dropout(x) x = torch.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x
epochs = 10 train_losses = [] train_accuracies = [] test_accuracies = []
def train_model(model, train_loader, test_loader, epochs=20): criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.5)
for epoch in range(epochs): model.train() running_loss = 0.0 correct_train = 0 total_train = 0
for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels)
loss.backward() optimizer.step()
running_loss += loss.item() _, predicted = torch.max(outputs, 1) total_train += labels.size(0) correct_train += (predicted == labels).sum().item()
avg_loss = running_loss / len(train_loader) train_acc = 100 * correct_train / total_train
model.eval() correct_test = 0 total_test = 0
with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs, 1) total_test += labels.size(0) correct_test += (predicted == labels).sum().item()
test_acc = 100 * correct_test / total_test
train_losses.append(avg_loss) train_accuracies.append(train_acc) test_accuracies.append(test_acc)
print(f"Epoch {epoch + 1}/{epochs}") print(f" Loss: {avg_loss:.4f}, Train Acc: {train_acc:.2f}%, Test Acc: {test_acc:.2f}%") print(f" Learning Rate: {scheduler.get_last_lr()[0]:.6f}")
scheduler.step()
return model
def plot_results(): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(range(1, len(train_losses) + 1), train_losses) ax1.set_xlabel('Epoch') ax1.set_ylabel('Loss') ax1.set_title('Training Loss Curve') ax1.grid(True)
ax2.plot(range(1, len(train_accuracies) + 1), train_accuracies, label='Train Accuracy') ax2.plot(range(1, len(test_accuracies) + 1), test_accuracies, label='Test Accuracy') ax2.set_xlabel('Epoch') ax2.set_ylabel('Accuracy (%)') ax2.set_title('Accuracy Curves') ax2.legend() ax2.grid(True)
plt.tight_layout() plt.show()
def main(): train_loader = DataLoader(train_data, batch_size=128, shuffle=True, num_workers=2) test_loader = DataLoader(test_data, batch_size=128, shuffle=False, num_workers=2)
model = SimpleCNN().to(device)
print(f"模型参数量: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
model = train_model(model, train_loader, test_loader, epochs)
plot_results()
print(f"\n最终测试准确率: {test_accuracies[-1]:.2f}%")
if __name__ == "__main__": main()
|